Aktuelle Projekte
Aktuell laufende öffentlich geförderte Projekte
2023
-
Quantum Measurement and Control for the enablement of quantum computing and quantum sensing
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Januar 2023
Mittelgeber: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
2022
-
Erforschung und Evaluation von organischen Laminaten für Verbindungskonzepte in Multi-Chip-Modulen
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Januar 2022
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Innovative, smarte elektronische Systeme werden meist erst durch dieVernetzung und den Einsatz von KI intelligent, also smart. Dies ziehteinerseits die Notwendigkeit nach einer wesentlich performanteren Verbindungder Komponenten innerhalb des Systems nach sich, als auch nach einerhoch-performanten Vernetzung einer Vielzahl solcher Systeme. Ist für den erstenAspekt insbesondere die Anbindung der Recheneinheit (DSP, FPGA oder ähnlich) andessen Peripherie entscheidend, so ist für die hochdatenratige Vernetzunginsbesondere eine sehr performante Verbindungsstruktur zwischen Recheneinheitund Schnittstelle zum Transportnetz notwendig. Hierbei realisiert dieSchnittstelle oft den Übergang von der elektrischen Domäne in die optischeÜbertragung. Um die erforderlichen Datenraten zwischen der Recheneinheit undder Schnittstelle physikalisch möglich zu machen, sind neue Aufbau- undVerbindungstechniken erforderlich, einhergehend mit neuen effizientenVerbindungsstrukturen. Insbesondere die dafür erforderliche enorme analogeBandbreite von 110GHz erfordert hier neue innovative Ansätze.
Moderne Fertigungstechnologien wie organische Multi-Chip-Module (MCM)erlauben den notwendigen hohen Integrationsgrad verschiedenster Komponenten aufeiner gemeinsamen Systemebene. Für viele Anwendungsbereiche wie beispielsweiseim Mobilfunk und in der optischen Datenkommunikation stellt das Verbinden vondigitalen Signalprozessoren (DSPs) und Speicherblöcken oder Interfacebausteinenauf einem gemeinsamen Trägermaterial (Interposer) einen entscheidenden Vorteildar. Dies wird im Rahmen des Projekts untersucht.
-
Flexible Elektronisch-Photonisch Integrierte Sensor Plattform II [EPIC-Sense II]
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Integrierte Elektronisch-Photonische Systeme für die Ultrabreitbandige Signalverarbeitung
Laufzeit: seit 1. September 2022
Mittelgeber: DFG / Schwerpunktprogramm (SPP)Dieses Projektvorhaben zielt auf die Erforschung eines skalierbaren, zweistufigen elektronisch-photonischen MIMO Radarsystems im Millimeterwellenbereich ab. In Phase I des SPP 2111 wurde bereits die kohärente optische Verteilung des Lokaloszillatorsignals sowie die breitbandige Integration eines EP-FMCW-Radar-Frontends untersucht. Die Vision für Phase II des SPP 2111 ist nun die Erweiterung eines monolithisch integrierten elektronisch-photonischen FMCW Radarsystems um einen neuen Frequenzmultiplex-Ansatz, der durch einen neuen zusätzlichen optischen Datenbus realisiert wird, der ein Hochgeschwindigkeits-Kodierschema überträgt. Mit Hilfe dieser zusätzlichen Kodierung kann eine große Anzahl von kohärenten 2x2-Radarmodulen unterschieden werden, wobei die rechenintensive Kodierung in einem zentralen Knotenpunkt konzentriert wird. Insbesondere an den elektro-optischen Schnittstellen ist hierfür eine intensive Forschung unter Einbeziehen neuer Technologien für optische Modulationsverfahren und Komponenten notwendig, um die herausfordernden Bandbreitenanforderungen zu erfüllen. -
Industrialisierbare Schlüsseltechnologien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen
(Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
Laufzeit: seit 1. Oktober 2022
Mittelgeber: BMBF / VerbundprojektMOTIVATION
Der Mobilfunk der sechsten Generation (6G) wird gänzlich neue Anwendungsszenarien in der Industrie, der Medizintechnik und dem alltäglichen Leben ermöglichen. Damit einher gehen neue und höhere Anforderungen an die Latenz, die übertragbare Datenrate, die räumliche Auflösung, sowie die Datenverarbeitung und das Energiemanagement der Kommunikationssysteme, welche derzeit nicht erfüllt werden können. Eine vielversprechende technologische Lösung bietet die Erschließung neuer Funkfrequenzen bis in den Terahertzbereich (THz). Damit können extrem hohe Datenraten und eine hochauflösende sensorische Erfassung ermöglicht werden. Für die Realisierung von 6G ist es daher wichtig, energieeffiziente THz-Empfänger und -sender mit steuerbarer Richtcharakteristik zu entwickeln, welche über hohe Signalgüte und Bandbreite verfügen. Unter anderem eröffnen optoelektronische Technologien hier vielversprechende Lösungsansätze.
ZIELE UND VORGEHEN
Im Projekt „Industrialisierbare Schlüsseltechnolo-gien für energieeffiziente Tbit-Transceiver in 6G Mobilfunksystemen - ESSENCE-6GM“ werden Lösungen erforscht, um Sende- und Empfangs-module für den Frequenzbereich knapp unter der Terahertzstrahlung (sub-THz) zu realisieren, welche ein kritischer Bestandteil künftiger 6G-Systeme sein werden. Für die technische Umsetzung stehen Wirtschaftlichkeit und Umweltverträglichkeit an erster Stelle: Die Lösungen müssen in zukünftigen industriellen Serienproduktionen kostengünstig realisierbar und im Vergleich zu heutigen Lösungen im Betrieb deutlich energieeffizienter sein. Das Projekt setzt gezielt bei den kritischen Schwachpunkten heutiger Sender- und Empfängersysteme an: Durch die Einführung neuer Konzepte bei der Analog- und Digitalwandlung, Schaltungstechnik und Modulintegration können Sender- und Empfangseinheiten für sub-THz-Systeme energieeffizienter und hochleistungsfähiger gemacht werden. Zu Projektende ist die Demonstration eines Mehrantennensystems geplant, mit dem Datenraten von bis zu einem Terabit pro Sekunde über 10 Meter hinaus in ausgewählten Nutzungsszenarien übertragen werden können.
INNOVATIONEN UND PERSPEKTIVEN
Im Projekt Essence-6GM werden Komponenten entwickelt, die eine leistungsfähige Übertragung im sub-THz-Bereich bei hoher Energieeffizienz ermöglichen. Insgesamt trägt das Projekt dazu bei, dass Deutschland eine führende Rolle bei der Ausgestaltung der 6G-Standards einnimmt und der Anteil von in Europa hergestellten Schlüsselkomponenten für 6G-Systeme gesteigert wird. Dies ist ein wesentlicher Beitrag, um die technologische Souveränität Deutschlands und Europas zu stärken.
-
Intelligentes robustes 320 GHz Radar-Edge-Sensornetzwerk
(Drittmittelfinanzierte Gruppenförderung – Gesamtprojekt)
Laufzeit: seit 1. Juli 2022
Mittelgeber: BMBF / VerbundprojektMOTIVATION
Die zunehmende Zahl von vernetzten Geräten und Sensoren, das „Internet of Things“ (IoT), ermöglicht vielfältige und neue Anwendungen. Sie sorgt aber auch für eine rasant wachsende Datenmenge. Die Verarbeitung von Daten an ihrem Entstehungsort (Edge Computing) hilft, damit effizient umzugehen. Edge Computing stärkt dabei die Funktionalität, Nachhaltigkeit, Vertrauenswürdigkeit und Wirtschaftlichkeit von Elektronikanwendungen durch den Einsatz von Künstlicher Intelligenz und Vernetzung. Ziel der OCTOPUS-Projekte ist es, anwendungsbezogen hochinnovative Elektronik bereitzustellen, um diese Vorteile zu erschließen.
ZIELE UND VORGEHEN
Ziel des Projekts ist es, Radarsensoren zu entwickeln, die als künstliche Sinnesorgane fungieren können. Die Messfrequenz von 320 GHz ermöglicht eine hohe Auflösung. Sie wird durch einen neuen 90 nm BiCMOS-Halbleiterfertigungsprozess erreicht. Es werden grundlegende Schaltungen, Antennenkonzepte sowie eine 160 GHz Kommunikationsschnittstelle für die Radarmodule erforscht. In hoher Anzahl an Objekte angebracht und miteinander vernetzt, bilden die Sensoren eine Schutzhülle, die mithilfe intelligenter Algorithmen ihr Umfeld wahrnehmen kann. Die Sensordaten werden dabei sowohl in den Radarmodulen als auch in einem zentralen Rechensystem verteilt und energieeffizient verarbeitet. Für einen effizienten Datenaustausch werden zudem Datenkompressionsverfahren entwickelt. Die Funktionalität wird anhand von Automotive-Szenarien erprobt.
INNOVATIONEN UND PERSPEKTIVEN
Die Schutzhülle stellt eine „Radarhaut“ als künstliches Sinnesorgan dar und birgt hohes Potenzial für zukünftige, autonom agierende Systeme wie unbemannte Fahrzeuge, Drohnen, Industrie- oder Haushaltsroboter. Damit können sie sich im Umfeld des Menschen bewegen und mit Menschen sowie mit anderen autonomen Systemen sicher interagieren.
-
MQV Superconducting Qubits Quantum Computer Demonstrators
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Januar 2022
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)Motivation
Quantencomputer gelten heute als die Rechenmaschinen der Zukunft. Sie verwenden sog. Qubits statt der herkömmlichen Bits der klassischen Computertechnik. Die besonderen Eigenschaften dieser Qubits erlauben dem Quantencomputer, alle mit den Qubits darstellbaren Zustände gleichzeitig einzunehmen, während herkömmliche Computer pro Rechenschritt nur mit einer der durch die verfügbaren Bits darstellbaren Kombination arbeiten können. Mit Quantencomputern lassen sich so Aufgaben lösen, an denen herkömmliche Computer scheitern. Vorgänge auf molekularer Ebene lassen sich simulieren, so dass z. B. die Wirkungsweise von neuen Wirkstoffen für die Pharmaindustrie vorhergesagt werden kann. Ebenso können Quantencomputer Wege finden, um hocheffiziente Batteriespeicher zu entwickeln, oder komplexe Probleme im Verkehrsmanagement lösen.
Ziele und Vorgehen
Im vorliegenden Verbundprojekt soll der Demonstrator eines Quantencomputers auf der Basis supraleitender Schaltkreise aufgebaut werden und ebenso die Peripherie, die notwendig ist, um den Quantencomputer an herkömmliche Computersysteme anzubinden. Die Arbeiten umfassen die Erforschung von Mikrowellenschaltkreisen zur Kontrolle der Qubits, die Erforschung von Integrationsmethoden für supraleitende Schaltkreise, und reichen bis zur Entwicklung angepasster Compiler und Laufzeitumgebungen für den Quantencomputer. Der zugehörige Quantenprozessor soll mit bis zu 100 Qubits rechnen können und wäre damit in der Lage zehn hoch dreißig Zustände gleichzeitig darstellen zu können (das ist etwa das Zehnmilliardenfache der Anzahl an Sternen, die das Universum schätzungsweise hat).
Innovation und Perspektiven
Ziel der Arbeiten ist es u.a. einen zuverlässigen Betrieb eines solchen Quantencomputers sicherzustellen, und auf der anderen Seite die Peripherie zu schaffen, um die Rechenleistung dieses Computers für eine breite Gruppe von Anwendern per Cloud-Computing zur Verfügung zu stellen.
-
THz-System mit einem Schachbrett-Spreizspektrum für digital-modulierte Radarsensoren und Kommunikationsanwendungen mit 200 GHz Bandbreite
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Integrierte Terahertz-Systeme mit neuartiger Funktionalität (INTEREST)
Laufzeit: seit 1. Januar 2022
Mittelgeber: DFG / Schwerpunktprogramm (SPP)TIEMPO ist ein Projekt zur Entwicklung eines I/Q Sendeempfängers für ein digitales Rauschradar mit Spektrumsspreizung im Frequenzbereich zwischen 220 GHz und 420 GHz: Dies entspricht einer Rekordbandbreite von 200 GHz. In diesem Projekt wird die Idee des frequenzmodulierten Dauerstrichradars (FMCW) in Kammarchitektur aufgegriffen und ein digitales Äquivalent erstellt. Um die extrem hohe Bandbreite zu erzielen, muss eine neuartige Systemarchitektur implementiert werden, die sogenannte „Schachbrett-Spektraldivision“. Dank einer eleganten Lösung auf Systemebene, genügt ein einzelner Oszillator, der bei einer festen Frequenz betrieben wird, um fünf lokale Trägerfrequenzen (LO) zu erzeugen, die die gesamte Bandbreite abdecken. Darüber hinaus kann die Anzahl an notwendigen Sende- und Empfangskanälen halbiert werden, indem hochgeschwindigkeits-I/Q-Komponenten mit der „Schachbrett“-Architektur verknüpft werden. Die Systemarchitektur kann auch in der Kommunikationstechnik Anwendung finden, da die Digitalsequenz extern generiert wird.Sehr hohe Bandbreiten führen zu Herausforderungen im Schaltungsentwurf, dem primären Fokus dieses Antrags: (1) I/Q Datenkonverter mit 8 bit Auflösung, 20 GHz Bandbreite und 40 Gbps Datenrate; (2) I/Q Sender und Empfänger, die bei über 400 GHz arbeiten; (3) LO Signalerzeugung, die die gesamte Bandbreite abdeckt; (4) In den Chip integrierte Antennen mit 200 GHz Bandbreite und hoher Effizienz. Diese Arbeitsfrequenzen befinden sich in der Nähe oder oberhalb von fmax der geplanten Validierungstechnologie, dem 22 nm FD-SOI (Fully-Depleted Silicon-On-Insulator) CMOS Prozess von Globalfoundries. Dies erfordert neuartige Schaltungen und Systemarchitekturen, die die techologischen Einschränkungen überwinden. Nach unserem Wissen ist dieser Ansatz der erste digitale Radarsendeempfänger mit Sprektrumsspreizung in diesem Frequenzbereich, sowie der erste mit einer Bandbreite von 200 GHz. -
Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Verbundprojekt: Komonenten und RU Charakterisierung - 6G-TERAKOM-
Laufzeit: seit 15. Oktober 2022
Mittelgeber: BMBF / Verbundprojekt
2021
-
6G für Mensch, Umwelt & Gesellschaft
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: 6G Platform Germany
Laufzeit: seit 1. August 2021
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)
URL: https://www.open6ghub.de/Der Open6GHub wird zur Entwicklung einer 6G Gesamtarchitektur, aber auch Ende-zu-Ende Lösungen unter anderem in folgenden Bereichen beitragen: erweiterte Netzwerktopologien mit hochagiler sogenannter organischer Vernetzung, Security- und Resilienz, Thz- und photonische Übertragungs verfahren, Sensorfunktionalitäten in den Netzen und deren intelligente Nutzung und Weiterverarbeitung und anwendungsspezifische Radioprotokolle.
An der FAU wird hierzu unter der Leitung von Prof. Franchi (ESCS), Prof. Weigel (LTE) und Prof. Vossiek (LHFT) geforscht. Am Lehrstuhl für Technische Elektronik (LTE) werden insbesondere Joint-Communications-and-Sensing-Technologien sowie deren Anwendung in resilienten 6G-Campusnetzen erforscht. Hierfür wird eng mit den Lehrstühlen ESCS und LHFT kooperiert. Des Weiteren findet am LTE der Entwurf von integrierten Device-to-Device Kommunikationschips für die Nutzung um 140 GHz statt.
Der Fokus von ESCS liegt auf JCAS, adaptiven RAN-Architekturen, Protokolldesign und Wellenformdesign für 6G. Darüber hinaus befasst sich ESCS mit Themen wie Resilience-by-Design und Security-by-Design.
-
Embedded Machine Learning
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Oktober 2021
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018) -
Höchstintegrierter lokalisierbarer EMG-Funktransponder
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: Empathokinästhetische Sensorik - Sensortechniken und Datenanalyseverfahren zur empathokinästhetischen
Modellbildung und Zustandsbestimmung (EmpkinS)
Laufzeit: seit 1. Januar 2021
Mittelgeber: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/In diesem TP sollen lokalisierbare Elektromyographie (EMG)-Funktransponder entworfen und realisiert werden, um erstmals Oberflächen-EMG-Daten synchron mit einer hochgenauen Funkortung in Echtzeit erfassen zu können. Hierfür wird ein 61-GHz-Transceiver in CMOS-Technologie entworfen, der das für das holografische Funkortungsverfahren notwendige phasenkohärente Signal aussendet und gleichzeitig extrem energiesparend ausgelegt werden muss. In einem weiteren Schritt soll der Transceiver in einer EMG-Sensorplattform integriert werden, die in Versuchsreihen an Probanden z. B. im Gesicht oder an den Beinen zur Analyse der Mimik oder des Ganges evaluiert werden soll.
2020
-
Frequenzselektive FM-Empfängerarchitekturen zur Steigerung der Sicherheit in der zivilen Luftfahrt
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Januar 2020
Mittelgeber: Bundesministerium für Wirtschaft und Technologie (BMWi)PassiveRadartechnologie stellt eine vielversprechende Ergänzung zu herkömmlichenRadarsystemen dar. Mit steigendem Druck aus Wirtschaft und Politik dasbegrenzte Spektrum, der für Telekommunikation und Ortung begrenztenFrequenzbänder vollumfänglich zu nutzen, steigt das Interesse an dieserTechnologie.
Ziel diesesForschungsvorhabens ist es die Technologie der Ortung durch passiveRadartechnik für die Nutzung in der zivilen Flugsicherung in Deutschland zuetablieren und neue Anwendungsbereiche zu erschließen.
Zur Verbesserungder Detektionsleistung werden verschiedene Möglichkeiten zum Aufbau einesfrequenzselektiven Analogempfängers für das FM-Band erarbeitet und in einbestehendes Passivradarsystem integriert. Für eine höchstmögliche Sensitivitätist dabei eine Filterung in verschiedenen Stufen des Empfängers unumgänglich.Diese muss jedoch, zusammen mit den frequenzumsetzenden Stufen, imGesamtsystemkontext evaluiert werden, um die Signalqualität, auch durchmögliche Imperfektionen der anlogen Realisierung, nicht zu degradieren. Füreine anschließende Verwertungsmöglichkeit ist ebenso auf eine optimale Balancezwischen Schaltungsaufwand, Kosten und Kompaktheit des Empfängers zu achten.Dazu werden die zu entwerfenden Empfängerarchitekturen zuerst inSystemsimulationen untersucht und bezüglich der Anforderungen aus der Anwendungbewertet. Anschließend erfolgt ein prototypischer Aufbau dervielversprechendsten Konzepte mit messtechnischer Verifikation derEinzelkomponenten und Evaluierung des Gesamtsystems in einem Feldtest.
-
GRK 2495: Project A – Electronic Circuits for Piezoelectric Energy Harvesting and Sensor Array Systems
(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)
Titel des Gesamtprojektes: GRK 2495: Energiekonvertierungssysteme: von Materialien zu Bauteilen
Laufzeit: seit 1. Juli 2020
Mittelgeber: DFG / Graduiertenkolleg (GRK)
URL: https://www.igk2495.fau.de/projects/project-a-electronic-circuits-for-piezoelectric-arrays/Multiport and multimodal energy harvesting array systems require further circuit advancements. Wearables for health monitoring are an excellent energy harvesting example at raising interest. Further applications: smart city, building/bridge structure and environmental monitoring
- Should be energy autonomous for easy handling, no charger, always ready to go for 24/7 use
- SoA: Only single port harvesters! Require multiport harvesters for multiple asynchronous energy sources!
- Multimodal harvesting (pressure, solar, thermal,…) and arrays increase availability of energy
- Energy harvesting at high conversion efficiency needed
- Provision of energy for: (i) local sensor acquisition, (ii) local data processing, and (iii) Wireless connectivity, WAN needs more energy than BAN
- Wireless connectivity BAN (Body Area Network, e.g. Bluetooth) replaced by WAN (Wide Area Network, cellular IoT)
The primary research goal is the development of improved circuit design for multiport harvesters dealing with asynchronous energy sources in a piezo array
- Can the piezo elements be simultaneously used as sensors and energy providers?
- How to deal with asynchronous energy sources?
- How to ensure high availability and stability of energy?
- How to increase conversion efficiency?
-
Peilalgorithmen und gehärtete Hardware (VPX-GPU/FPGA) für den Grenz- und Inlandsschutz
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. November 2020
Mittelgeber: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)Peil-Systeme zurIdentifikation von Funksignale und damit zur Identifikation von unbekanntenFunkquellen sind ein wichtiges Instrument in der Aufklärung und der Ortungelektromagnetischer Aussendungen.
Derrechentechnische Aufwand, der in modernen, hochqualitativen Peilanlagenabgedeckt werden muss, ist generell sehr hoch und erfordert eine entsprechendleistungsfähige und aufwändige Infrastruktur (Rechnerressourcen, Netzwerk,Stromversorgung, Kühlung, Systemintegration). Dies spielt bei stationären Systemen- abgesehen vom Preis - eine eher untergeordnete Rolle, da man dieseInfrastruktur vergleichsweise einfach bereitstellen kann. Bei mobilen Systemenhingegen stößt man sehr schnell an Grenzen, die teils durch die mobilePlattform selbst (u.a. Landfahrzeug, Schiff, Flugzeug) und teils durch denEinsatzfall bestimmt werden. Mit verschiedenen Mitteln und unter Hinnahmegewisser Einschränkungen kann man gute Peilanlagen auch auf mobilen Plattformeneinsetzen, allerdings treibt das den Aufwand und die Kosten immens in die Höhe.
Das Projekt soll einemögliche Implementierung mobiler Peilsysteme analysieren, erforschen underproben. Hierfür werden verschiedene Hardware-Lösungen verifiziert undverglichen. Zudem werden innovative Algorithmen entwickelt, die für mobileSystem mit weniger performanter und weniger effizienter Hardware zugeschnittensind, um ein sowohl mobiles als auch möglichst effizientes System zu erhalten.Hierzu werden in diesem Projekt hochspezialisierte Hardware wie FPGAs oder GPUsverwendet, um die Systeme effizienter, kleiner und leichter zu machen.
2019
-
Radarsysteme bei 140 GHz in 22 nm FDSOI CMOS für genaue Gestenerkennung mit kompakten Abmessungen, hoher Energieeffizienz und digitaler Signalgenerierung
(Drittmittelfinanzierte Einzelförderung)
Laufzeit: seit 1. Oktober 2019
Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)